Remez-type inequality for discrete sets

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A REMEZ - TYPE INEQUALITY 3 Theorem 1

The principal result of this paper is a Remez-type inequality for M untz polynomials: p(x) := n X i=0 a i x i ; or equivalently for Dirichlet sums: P(t) := n X i=0 a i e ? i t ; where (i) 1 i=0 is a sequence of distinct real numbers. The most useful form of this inequality states that for every sequence (i) 1 i=0 satisfying 1 X i=0 i 6 =0 1 j i j < 1 there is a constant c depending only on (i) ...

متن کامل

Norming Sets and Related Remez-type Inequalities

The classical Remez inequality ([33]) bounds the maximum of the absolute value of a real polynomial P of degree d on [−1, 1] through the maximum of its absolute value on any subset Z ⊂ [−1, 1] of positive Lebesgue measure. Extensions to several variables and to certain sets of Lebesgue measure zero, massive in a much weaker sense, are available (see, e.g., [14, 39, 8]). Still, given a subset Z ...

متن کامل

A multidimensional discrete Hilbert-type inequality

In this paper, by using the way of weight coecients and technique of real analysis, a multidimensionaldiscrete Hilbert-type inequality with a best possible constant factor is given. The equivalentform, the operator expression with the norm are considered.

متن کامل

a cauchy-schwarz type inequality for fuzzy integrals

نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.

15 صفحه اول

The Remez Inequality for Linear Combinations of Shifted Gaussians

Let Gn := ( f : f(t) = n X j=1 aje −(t−λj) , aj , λj ∈ R ) . In this paper we prove the following result. Theorem (Remez-Type Inequality for Gn). Let s ∈ (0,∞). There is an absolute constant c1 > 0 such that exp(c1(min{ns, ns2} + s)) ≤ sup f ‖f‖R ≤ exp(240(min{n1/2s, ns2} + s)) , where the supremum is taken for all f ∈ Gn satisfying m ({t ∈ R : |f(t)| ≥ 1}) ≤ s . We also prove the right higher ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Israel Journal of Mathematics

سال: 2011

ISSN: 0021-2172,1565-8511

DOI: 10.1007/s11856-011-0131-4